Производная функции. Подробная теория с примерами


Запомнить очень легко.

Ну и не будем далеко ходить, сразу же рассмотрим обратную функцию. Какая функция является обратной для показательной функции? Логарифм:

В нашем случае основанием служит число:

Такой логарифм (то есть логарифм с основанием) называется «натуральным», и для него используем особое обозначение: вместо пишем.

Чему равен? Конечно же, .

Производная от натурального логарифма тоже очень простая:

Примеры:

  1. Найди производную функции.
  2. Чему равна производная функции?

Ответы: Экспонента и натуральный логарифм - функции уникально простые с точки зрения производной. Показательные и логарифмические функции с любым другим основанием будут иметь другую производную, которую мы с тобой разберем позже, после того как пройдем правила дифференцирования.

Правила дифференцирования

Правила чего? Опять новый термин, опять?!...

Дифференцирование - это процесс нахождения производной.

Только и всего. А как еще назвать этот процесс одним словом? Не производнование же... Дифференциалом математики называют то самое приращение функции при. Происходит этот термин от латинского differentia — разность. Вот.

При выводе всех этих правил будем использовать две функции, например, и. Нам понадобятся также формулы их приращений:

Всего имеется 5 правил.

Константа выносится за знак производной.

Если - какое-то постоянное число (константа), тогда.

Очевидно, это правило работает и для разности: .

Докажем. Пусть, или проще.

Примеры.

Найдите производные функций:

  1. в точке;
  2. в точке;
  3. в точке;
  4. в точке.

Решения:

  1. (производная одинакова во всех точках, так как это линейная функция, помнишь?);

Производная произведения

Здесь все аналогично: введем новую функцию и найдем ее приращение:

Производная:

Примеры:

  1. Найдите производные функций и;
  2. Найдите производную функции в точке.

Решения:

Производная показательной функции

Теперь твоих знаний достаточно, чтобы научиться находить производную любой показательной функции, а не только экспоненты (не забыл еще, что это такое?).

Итак, где - это какое-то число.

Мы уже знаем производную функции, поэтому давай попробуем привести нашу функцию к новому основанию:

Для этого воспользуемся простым правилом: . Тогда:

Ну вот, получилось. Теперь попробуй найти производную, и не забудь, что эта функция - сложная.

Получилось?

Вот, проверь себя:

Формула получилась очень похожая на производную экспоненты: как было, так и осталось, появился только множитель, который является просто числом, но не переменной.

Примеры:
Найди производные функций:

Ответы:

Это просто число, которое невозможно посчитать без калькулятора, то есть никак не записать в более простом виде. Поэтому в ответе его в таком виде и оставляем.

    Заметим, что здесь частное двух функций, поэтому применим соответствующее правило дифференцирования:

    В этом примере произведение двух функций:

Производная логарифмической функции

Здесь аналогично: ты уже знаешь производную от натурального логарифма:

Поэтому, чтобы найти произвольную от логарифма с другим основанием, например, :

Нужно привести этот логарифм к основанию. А как поменять основание логарифма? Надеюсь, ты помнишь эту формулу:

Только теперь вместо будем писать:

В знаменателе получилась просто константа (постоянное число, без переменной). Производная получается очень просто:

Производные показательной и логарифмической функций почти не встречаются в ЕГЭ, но не будет лишним знать их.

Производная сложной функции.

Что такое «сложная функция»? Нет, это не логарифм, и не арктангенс. Данные функции может быть сложны для понимания (хотя, если логарифм тебе кажется сложным, прочти тему «Логарифмы» и все пройдет), но с точки зрения математики слово «сложная» не означает «трудная».

Представь себе маленький конвейер: сидят два человека и проделывают какие-то действия с какими-то предметами. Например, первый заворачивает шоколадку в обертку, а второй обвязывает ее ленточкой. Получается такой составной объект: шоколадка, обернутая и обвязанная ленточкой. Чтобы съесть шоколадку, тебе нужно проделать обратные действия в обратном порядке.

Давай создадим подобный математический конвейер: сперва будем находить косинус числа, а затем полученное число возводить в квадрат. Итак, нам дают число (шоколадка), я нахожу его косинус (обертка), а ты затем возводишь то, что у меня получилось, в квадрат (обвязываешь ленточкой). Что получилось? Функция. Это и есть пример сложной функции: когда для нахождения ее значения мы проделываем первое действие непосредственно с переменной, а потом еще второе действие с тем, что получилось в результате первого.

Другими словами, сложная функция - это функция, аргументом которой является другая функция : .

Для нашего примера, .

Мы вполне можем проделывать те же действия и в обратном порядке: сначала ты возводишь в квадрат, а я затем ищу косинус полученного числа: . Несложно догадаться, что результат будет почти всегда разный. Важная особенность сложных функций: при изменении порядка действий функция меняется.

Второй пример: (то же самое). .

Действие, которое делаем последним будем называть «внешней» функцией , а действие, совершаемое первым - соответственно «внутренней» функцией (это неформальные названия, я их употребляю только для того, чтобы объяснить материал простым языком).

Попробуй определить сам, какая функция является внешней, а какая внутренней:

Ответы: Разделение внутренней и внешней функций очень похоже на замену переменных: например, в функции

  1. Первым будем выполнять какое действие? Сперва посчитаем синус, а только потом возведем в куб. Значит, внутренняя функция, а внешняя.
    А исходная функция является их композицией: .
  2. Внутренняя: ; внешняя: .
    Проверка: .
  3. Внутренняя: ; внешняя: .
    Проверка: .
  4. Внутренняя: ; внешняя: .
    Проверка: .
  5. Внутренняя: ; внешняя: .
    Проверка: .

производим замену переменных и получаем функцию.

Ну что ж, теперь будем извлекать нашу шоколадку - искать производную. Порядок действий всегда обратный: сначала ищем производную внешней функции, затем умножаем результат на производную внутренней функции. Применительно к исходному примеру это выглядит так:

Другой пример:

Итак, сформулируем, наконец, официальное правило:

Алгоритм нахождения производной сложной функции:

Вроде бы всё просто, да?

Проверим на примерах:

Решения:

1) Внутренняя: ;

Внешняя: ;

2) Внутренняя: ;

(только не вздумай теперь сократить на! Из под косинуса ничего не выносится, помнишь?)

3) Внутренняя: ;

Внешняя: ;

Сразу видно, что здесь трёхуровневая сложная функция: ведь - это уже сама по себе сложная функция, а из нее еще извлекаем корень, то есть выполняем третье действие (шоколадку в обертке и с ленточкой кладем в портфель). Но пугаться нет причин: все-равно «распаковывать» эту функцию будем в том же порядке, что и обычно: с конца.

То есть сперва продифференцируем корень, затем косинус, и только потом выражение в скобках. А потом все это перемножим.

В таких случаях удобно пронумеровать действия. То есть, представим, что нам известен. В каком порядке будем совершать действия, чтобы вычислить значение этого выражения? Разберем на примере:

Чем позже совершается действие, тем более «внешней» будет соответствующая функция. Последовательность действий - как и раньше:

Здесь вложенность вообще 4-уровневая. Давай определим порядок действий.

1. Подкоренное выражение. .

2. Корень. .

3. Синус. .

4. Квадрат. .

5. Собираем все в кучу:

ПРОИЗВОДНАЯ. КОРОТКО О ГЛАВНОМ

Производная функции - отношение приращения функции к приращению аргумента при бесконечно малом приращении аргумента:

Базовые производные:

Правила дифференцирования:

Константа выносится за знак производной:

Производная суммы:

Производная произведения:

Производная частного:

Производная сложной функции:

Алгоритм нахождения производной от сложной функции:

  1. Определяем «внутреннюю» функцию, находим ее производную.
  2. Определяем «внешнюю» функцию, находим ее производную.
  3. Умножаем результаты первого и второго пунктов.

Доказательство и вывод формул производной натурального логарифма и логарифма по основанию a. Примеры вычисления производных от ln 2x, ln 3x и ln nx. Доказательство формулы производной логарифма n-го порядка методом математической индукции.

Содержание

См. также: Логарифм - свойства, формулы, график
Натуральный логарифм - свойства, формулы, график

Вывод формул производных натурального логарифма и логарифма по основанию a

Производная натурального логарифма от x равна единице, деленной на x:
(1) (ln x)′ = .

Производная логарифма по основанию a равна единице, деленной на переменную x, умноженную на натуральный логарифм от a :
(2) (log a x)′ = .

Доказательство

Пусть есть некоторое положительное число, не равное единице. Рассмотрим функцию, зависящую от переменной x , которая является логарифмом по основанию :
.
Эта функция определена при . Найдем ее производную по переменной x . По определению, производная является следующим пределом:
(3) .

Преобразуем это выражение, чтобы свести его к известным математическим свойствам и правилам. Для этого нам нужно знать следующие факты:
А) Свойства логарифма . Нам понадобятся следующие формулы:
(4) ;
(5) ;
(6) ;
Б) Непрерывность логарифма и свойство пределов для непрерывной функции:
(7) .
Здесь - некоторая функция, у которой существует предел и этот предел положителен.
В) Значение второго замечательного предела:
(8) .

Применяем эти факты к нашему пределу. Сначала преобразуем алгебраическое выражение
.
Для этого применим свойства (4) и (5).

.

Воспользуемся свойством (7) и вторым замечательным пределом (8):
.

И, наконец, применим свойство (6):
.
Логарифм по основанию e называется натуральным логарифмом . Он обозначается так:
.
Тогда ;
.

Тем самым мы получили формулу (2) производной логарифма.

Производная натурального логарифма

Еще раз выпишем формулу производной логарифма по основанию a :
.
Эта формула имеет наиболее простой вид для натурального логарифма, для которого , . Тогда
(1) .

Из-за такой простоты, натуральный логарифм очень широко используется в математическом анализе и в других разделах математики, связанных с дифференциальным исчислением. Логарифмические функции с другими основаниями можно выразить через натуральный логарифм, используя свойство (6):
.

Производную логарифма по основанию можно найти из формулы (1), если вынести постоянную за знак дифференцирования:
.

Другие способы доказательство производной логарифма

Здесь мы предполагаем, что нам известна формула производной экспоненты:
(9) .
Тогда мы можем вывести формулу производной натурального логарифма, учитывая, что логарифм является обратной функцией к экспоненте.

Докажем формулу производной натурального логарифма, применив формулу производной обратной функции :
.
В нашем случае . Обратной функцией к натуральному логарифму является экспонента:
.
Ее производная определяется по формуле (9). Переменные можно обозначить любой буквой. В формуле (9), заменим переменную x на y:
.
Поскольку , то
.
Тогда
.
Формула доказана.


Теперь докажем формулу производной натурального логарифма с помощью правила дифференцирования сложной функции . Поскольку функции и являются обратными друг к другу, то
.
Дифференцируем это уравнение по переменной x :
(10) .
Производная от икса равна единице:
.
Применяем правило дифференцирования сложной функции :
.
Здесь . Подставим в (10):
.
Отсюда
.

Пример

Найти производные от ln 2x, ln 3x и ln nx .

Исходные функции имеют похожий вид. Поэтому мы найдем производную от функции y = ln nx . Затем подставим n = 2 и n = 3 . И, тем самым, получим формулы для производных от ln 2x и ln 3x .

Итак, ищем производную от функции
y = ln nx .
Представим эту функцию как сложную функцию, состоящую из двух функций:
1) Функции , зависящей от переменной : ;
2) Функции , зависящей от переменной : .
Тогда исходная функция составлена из функций и :
.

Найдем производную от функции по переменной x:
.
Найдем производную от функции по переменной :
.
Применяем формулу производной сложной функции .
.
Здесь мы подставили .

Итак, мы нашли:
(11) .
Мы видим, что производная не зависит от n . Этот результат вполне естественен, если преобразовать исходную функцию, применяя формулу логарифма от произведения:
.
- это постоянная. Ее производная равна нулю. Тогда по правилу дифференцирования суммы имеем:
.

; ; .

Производная логарифма модуля x

Найдем производную от еще одной очень важной функции - натурального логарифма от модуля x :
(12) .

Рассмотрим случай . Тогда и функция имеет вид:
.
Ее производная определяется по формуле (1):
.

Теперь рассмотрим случай . Тогда и функция имеет вид:
,
где .
Но производную этой функции мы также нашли в приведенном выше примере. Она не зависит от n и равна
.
Тогда
.

Объединяем эти два случая в одну формулу:
.

Соответственно, для логарифма по основанию a , имеем:
.

Производные высших порядков натурального логарифма

Рассмотрим функцию
.
Мы нашли ее производную первого порядка:
(13) .

Найдем производную второго порядка:
.
Найдем производную третьего порядка:
.
Найдем производную четвертого порядка:
.

Можно заметить, что производная n-го порядка имеет вид:
(14) .
Докажем это методом математической индукции.

Доказательство

Подставим в формулу (14) значение n = 1:
.
Поскольку , то при n = 1 , формула (14) справедлива.

Предположим, что формула (14) выполняется при n = k . Докажем, что из этого следует, что формула справедлива при n = k + 1 .

Действительно, при n = k имеем:
.
Дифференцируем по переменной x :

.
Итак, мы получили:
.
Эта формула совпадает с формулой (14) при n = k + 1 . Таким образом, из предположения, что формула (14) справедлива при n = k следует, что формула (14) справедлива при n = k + 1 .

Поэтому формула (14), для производной n-го порядка, справедлива для любых n .

Производные высших порядков логарифма по основанию a

Чтобы найти производную n-го порядка от логарифма по основанию a , нужно выразить его через натуральный логарифм:
.
Применяя формулу (14), находим n-ю производную:
.

См. также:

Вам кажется, что до экзамена еще много времени? Это месяц? Два? Год? Практика показывает, что ученик лучше всего справляется с экзаменом в том случае, если начал готовиться к нему заблаговременно. В ЕГЭ немало сложных заданий, который стоят на пути школьника и будущего абитуриента к высшим баллам. Эти преграды нужно научиться преодолевать, к тому же, делать это несложно. Вам необходимо понять принцип работы с различными заданиями из билетов. Тогда и с новыми не возникнет проблем.

Логарифмы на первый взгляд кажутся невероятно сложными, но при детальном разборе ситуация значительно упрощается. Если вы хотите сдать ЕГЭ на высший балл, вам стоит разобраться в рассматриваемом понятии, что мы и предлагаем сделать в этой статье.

Для начала разделим эти определения. Что такое логарифм (log)? Это показатель степени, в которую надо возвести основание, чтобы получить указанное число. Если непонятно, разберем элементарный пример.

В этом случае основание, стоящее внизу, необходимо возвести во вторую степень, чтобы получить число 4.

Теперь разберемся со вторым понятием. Производная функции в любом виде называется понятие, характеризующее изменение функции в приведенной точке. Впрочем, это школьная программа, и если вы испытываете проблемы с данными понятиями по отдельности, стоит повторить тему.

Производная логарифма

В задания ЕГЭ по этой теме можно привести несколько задач в качестве примера. Для начала самая простая логарифмическая производная. Необходимо найти производную следующей функции.

Нам нужно найти следующую производную

Существует специальная формула.

В этом случае x=u, log3x=v. Подставляем значения из нашей функции в формулу.

Производная x будет равняться единице. С логарифмом немного труднее. Но принцип вы поймете, если просто подставите значения. Напомним, что производной lg x называется производная десятичного логарифма, а производная ln х — это производная от натурального логорифма (по основанию e).

Теперь просто подставьте полученные значения в формулу. Попробуйте сами, далее сверим ответ.

В чем здесь может быть проблема для некоторых? Мы ввели понятие натурального логарифма. Расскажем о нем, а заодно разберемся, как решать задачи с ним. Ничего сложного вы не увидите, особенно, когда поймете принцип его работы. К нему вам стоит привыкнуть, так как он нередко используется в математике (в высших учебных заведениях тем более).

Производная натурального логарифма

По своей сути, это производная логарифма по основанию e (это иррациональное число, которое равняется примерно 2,7). На деле ln очень прост, поэтому часто используется в математике в целом. Собственно, решение задачи с ним тоже не станет проблемой. Стоит запомнить, что производная от натурального логарифма по основанию е будет равно единице поделенной на x. Самым показательным будет решение следующего примера.

Представим ее как сложную функцию, состоящую из двух простых.

Достаточно преобразовать

Ищем производную от u по x

Продолжим со второй

Используем способ решения производной сложной функции, подставляя u=nx.

Что получилось в итоге?

А теперь давайте вспомним, что в этом примере означало n? Это любое число, которое может встретиться в натуральном логарифме перед x. Вам важно понять, что от нее не зависит ответ. Подставляйте, что угодно, ответ все равно будет 1/x.

Как видите, ничего сложного здесь нет, достаточно лишь понять принцип, чтобы быстро и эффективно решать задачи по этой теме. Теперь вы знаете теорию, осталось закрепить на практике. Тренируйтесь в решении задач, чтобы надолго запомнить принцип их решения. Быть может, вам и не пригодится это знание после окончания школы, но на экзамене оно будет как никогда актуальным. Удачи вам!

Сложные производные. Логарифмическая производная.
Производная степенно-показательной функции

Продолжаем повышать свою технику дифференцирования. На данном уроке мы закрепим пройденный материал, рассмотрим более сложные производные, а также познакомимся с новыми приемами и хитростями нахождения производной, в частности, с логарифмической производной.

Тем читателям, у кого низкий уровень подготовки, следует обратиться к статье Как найти производную? Примеры решений , которая позволит поднять свои навыки практически с нуля. Далее необходимо внимательно изучить страницу Производная сложной функции , понять и прорешать все приведенные мной примеры. Данный урок логически третий по счету, и после его освоения Вы будете уверенно дифференцировать достаточно сложные функции. Нежелательно придерживаться позиции «Куда еще? Да и так хватит!», поскольку все примеры и приёмы решения взяты из реальных контрольных работ и часто встречаются на практике.

Начнем с повторения. На уроке Производная сложной функции мы рассмотрели ряд примеров с подробными комментариями. В ходе изучения дифференциального исчисления и других разделов математического анализа – дифференцировать придется очень часто, и не всегда бывает удобно (да и не всегда нужно) расписывать примеры очень подробно. Поэтому мы потренируемся в устном нахождении производных. Самым подходящими «кандидатами» для этого являются производные простейших из сложных функций, например:

По правилу дифференцирования сложной функции :

При изучении других тем матана в будущем такая подробная запись чаще всего не требуется, предполагается, что студент умеет находить подобные производные на автопилоте автомате. Представим, что в 3 часа ночи раздался телефонный звонок, и приятный голос спросил: «Чему равна производная тангенса двух икс?». На это должен последовать почти мгновенный и вежливый ответ: .

Первый пример будет сразу предназначен для самостоятельного решения.

Пример 1

Найти следующие производные устно, в одно действие, например: . Для выполнения задания нужно использовать только таблицу производных элементарных функций (если она еще не запомнилась). Если возникнут затруднения, рекомендую перечитать урок Производная сложной функции .

, , ,
, , ,
, , ,

, , ,

, , ,

, , ,

, ,

Ответы в конце урока

Сложные производные

После предварительной артподготовки будут менее страшны примеры, с 3-4-5 вложениями функций. Возможно, следующие два примера покажутся некоторым сложными, но если их понять (кто-то и помучается), то почти всё остальное в дифференциальном исчислении будет казаться детской шуткой.

Пример 2

Найти производную функции

Как уже отмечалось, при нахождении производной сложной функции, прежде всего, необходимо правильно РАЗОБРАТЬСЯ во вложениях. В тех случаях, когда есть сомнения, напоминаю полезный приём: берем подопытное значение «икс», например, и пробуем (мысленно или на черновике) подставить данное значение в «страшное выражение».

1) Сначала нам нужно вычислить выражение , значит, сумма – самое глубокое вложение.

2) Затем необходимо вычислить логарифм:

4) Потом косинус возвести в куб:

5) На пятом шагу разность:

6) И, наконец, самая внешняя функция – это квадратный корень:

Формула дифференцирования сложной функции применятся в обратном порядке, от самой внешней функции, до самой внутренней. Решаем:

Вроде без ошибок….

(1) Берем производную от квадратного корня.

(2) Берем производную от разности, используя правило

(3) Производная тройки равна нулю. Во втором слагаемом берем производную от степени (куба).

(4) Берем производную от косинуса.

(5) Берем производную от логарифма.

(6) И, наконец, берем производную от самого глубокого вложения .

Может показаться слишком трудно, но это еще не самый зверский пример. Возьмите, например, сборник Кузнецова и вы оцените всю прелесть и простоту разобранной производной. Я заметил, что похожую штуку любят давать на экзамене, чтобы проверить, понимает студент, как находить производную сложной функции, или не понимает.

Следующий пример для самостоятельного решения.

Пример 3

Найти производную функции

Подсказка: Сначала применяем правила линейности и правило дифференцирования произведения

Полное решение и ответ в конце урока.

Настало время перейти к чему-нибудь более компактному и симпатичному.
Не редка ситуация, когда в примере дано произведение не двух, а трёх функций. Как найти производную от произведения трёх множителей?

Пример 4

Найти производную функции

Сначала смотрим, а нельзя ли произведение трех функций превратить в произведение двух функций? Например, если бы у нас в произведении было два многочлена, то можно было бы раскрыть скобки. Но в рассматриваемом примере все функции разные: степень, экспонента и логарифм.

В таких случаях необходимо последовательно применить правило дифференцирования произведения два раза

Фокус состоит в том, что за «у» мы обозначим произведение двух функций: , а за «вэ» – логарифм: . Почему так можно сделать? А разве – это не произведение двух множителей и правило не работает?! Ничего сложного нет:

Теперь осталось второй раз применить правило к скобке :

Можно еще поизвращаться и вынести что-нибудь за скобки, но в данном случае ответ лучше оставить именно в таком виде – легче будет проверять.

Рассмотренный пример можно решить вторым способом:

Оба способа решения абсолютно равноценны.

Пример 5

Найти производную функции

Это пример для самостоятельного решения, в образце он решен первым способом.

Рассмотрим аналогичные примеры с дробями.

Пример 6

Найти производную функции

Здесь можно пойти несколькими путями:

Или так:

Но решение запишется более компактно, если в первую очередь использовать правило дифференцирования частного , приняв за весь числитель:

В принципе, пример решён, и если его оставить в таком виде, то это не будет ошибкой. Но при наличии времени всегда желательно проверить на черновике, а нельзя ли ответ упростить? Приведём выражение числителя к общему знаменателю и избавимся от трёхэтажности дроби :

Минус дополнительных упрощений состоит в том, что есть риск допустить ошибку уже не при нахождении производной, а при банальных школьных преобразованиях. С другой стороны, преподаватели нередко бракуют задание и просят «довести до ума» производную.

Более простой пример для самостоятельного решения:

Пример 7

Найти производную функции

Продолжаем осваивать приёмы нахождения производной, и сейчас мы рассмотрим типовой случай, когда для дифференцирования предложен «страшный» логарифм

Пример 8

Найти производную функции

Тут можно пойти длинным путём, используя правило дифференцирования сложной функции:

Но первый же шаг сразу повергает в уныние – предстоит взять неприятную производную от дробной степени , а потом ещё и от дроби .

Поэтому перед тем как брать производную от «навороченного» логарифма, его предварительно упрощают, используя известные школьные свойства:



! Если под рукой есть тетрадь с практикой, перепишите эти формулы прямо туда. Если тетради нет, перерисуйте их на листочек, поскольку оставшиеся примеры урока буду вращаться вокруг этих формул.

Само решение можно оформить примерно так:

Преобразуем функцию:

Находим производную:

Предварительное преобразование самой функции значительно упростило решение. Таким образом, когда для дифференцирования предложен подобный логарифм, то его всегда целесообразно «развалить».

А сейчас пара несложных примеров для самостоятельного решения:

Пример 9

Найти производную функции

Пример 10

Найти производную функции

Все преобразования и ответы в конце урока.

Логарифмическая производная

Если производная от логарифмов – это такая сладкая музыка, то возникает вопрос, а нельзя ли в некоторых случаях организовать логарифм искусственно? Можно! И даже нужно.

Пример 11

Найти производную функции

Похожие примеры мы недавно рассмотрели. Что делать? Можно последовательно применить правило дифференцирования частного, а потом правило дифференцирования произведения. Недостаток способа состоит в том, что получится огромная трехэтажная дробь, с которой совсем не хочется иметь дела.

Но в теории и практике есть такая замечательная вещь, как логарифмическая производная. Логарифмы можно организовать искусственно, «навесив» их на обе части:

Примечание : т.к. функция может принимать отрицательные значения, то, вообще говоря, нужно использовать модули: , которые исчезнут в результате дифференцирования. Однако допустимо и текущее оформление, где по умолчанию принимаются во внимание комплексные значения. Но если со всей строгостью, то и в том и в другом случае следует сделать оговорку, что .

Теперь нужно максимально «развалить» логарифм правой части (формулы перед глазами?). Я распишу этот процесс очень подробно:

Собственно приступаем к дифференцированию.
Заключаем под штрих обе части:

Производная правой части достаточно простая, её я комментировать не буду, поскольку если вы читаете этот текст, то должны уверенно с ней справиться.

Как быть с левой частью?

В левой части у нас сложная функция . Предвижу вопрос: «Почему, там же одна буковка «игрек» под логарифмом?».

Дело в том, что эта «одна буковка игрек» – САМА ПО СЕБЕ ЯВЛЯЕТСЯ ФУНКЦИЕЙ (если не очень понятно, обратитесь к статье Производная от функции, заданной неявно). Поэтому логарифм – это внешняя функция, а «игрек» – внутренняя функция. И мы используем правило дифференцирования сложной функции :

В левой части как по мановению волшебной палочки у нас «нарисовалась» производная . Далее по правилу пропорции перекидываем «игрек» из знаменателя левой части наверх правой части:

А теперь вспоминаем, о каком таком «игреке»-функции мы рассуждали при дифференцировании? Смотрим на условие:

Окончательный ответ:

Пример 12

Найти производную функции

Это пример для самостоятельного решения. Образец оформления примера данного типа в конце урока.

С помощью логарифмической производной можно было решить любой из примеров № 4-7, другое дело, что там функции проще, и, может быть, использование логарифмической производной не слишком-то и оправдано.

Производная степенно-показательной функции

Данную функцию мы еще не рассматривали. Степенно-показательная функция – это функция, у которой и степень и основание зависят от «икс» . Классический пример, который вам приведут в любом учебнике или на любой лекции:

Как найти производную от степенно-показательной функции?

Необходимо использовать только что рассмотренный приём – логарифмическую производную. Навешиваем логарифмы на обе части:

Как правило, в правой части из-под логарифма выносится степень:

В результате в правой части у нас получилось произведение двух функций, которое будет дифференцироваться по стандартной формуле .

Находим производную, для этого заключаем обе части под штрихи:

Дальнейшие действия несложны:

Окончательно:

Если какое-то преобразование не совсем понятно, пожалуйста, внимательно перечитайте объяснения Примера № 11.

В практических заданиях степенно-показательная функция всегда будет сложнее, чем рассмотренный лекционный пример.

Пример 13

Найти производную функции

Используем логарифмическую производную.

В правой части у нас константа и произведение двух множителей – «икса» и «логарифма логарифма икс» (под логарифм вложен еще один логарифм). При дифференцировании константу, как мы помним, лучше сразу вынести за знак производной, чтобы она не мешалась под ногами; и, конечно, применяем знакомое правило :








2024 © vadimavva.ru.